CHROTRAN: A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers
نویسندگان
چکیده
Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a three-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, CHROTRAN, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling and biomass death. Our software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.
منابع مشابه
Mathematical Modeling of Natural in Situ Bioremediation to Estimate Initial Contaminant Concentration Effect
A mathematical model has been simulated to describe natural in situ bioremediation of contaminated soil. The model equations consist of a system of three non-linear partial differential equations. Sensitivity analysis conducted by numerically solving them, has demonstrated the effect of initial contaminant concentration on the time and mechanism of remediation. The result of simulation indicate...
متن کاملNovel nano cellulosic fibers for remediation of heavy metals from synthetic water
The increased surface area-to-volume ratio of nanoparticles, quantum size effects and the ability to tune surface properties through molecular modification make nanostructures ideal for environmental remediation. The present piece of work reports the preparation and characterization of nano cellulosic fibers (NCFs) with further polymeric reinforcement using vinyl sulphonic acid for the remediat...
متن کاملNovel nano cellulosic fibers for remediation of heavy metals from synthetic water
The increased surface area-to-volume ratio of nanoparticles, quantum size effects and the ability to tune surface properties through molecular modification make nanostructures ideal for environmental remediation. The present piece of work reports the preparation and characterization of nano cellulosic fibers (NCFs) with further polymeric reinforcement using vinyl sulphonic acid for the remediat...
متن کاملReducing Agents Enhanced Electrokinetic Soil Remediation (EKSR) for Heavy Metal Contaminated Soil
Reducing agents-Enhanced electrokinetic Soil Remediation (EKSR) was performed for the removal of chromium (Cr), cobalt (Co) and nickel (Ni) from contaminated soil. The reducing agents oxalic acid and ascorbic acid were investigated under constant voltage gradient (2.0 V/cm), current changes, pH, redox potential, concentration changes and removal performance of Heavy Metals (HMs). The result...
متن کاملApplication of exogenous organic acids and remediation process of lead and cadmium contamination in canola plants. Hakimeh Oloumi*, Effat Ahmadi Mousavi and Neda Hasibi
Heavy metal contamination of soil, water and air has caused serious environmental hazard in the biosphere due to rapid industrialization and urbanization. A variety of metal binding ligands such as organic acids and amino acids involve in the heavy metal remediation mechanisms by plants. This paper analyses the possible role of amino acid histidine and organic acids, namely, citric, oxalic and ...
متن کامل